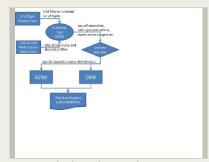
An Uninhabited Aerial System Safety Analysis Model (USAM), Phase I


Completed Technology Project (2013 - 2013)

Project Introduction

The National Airspace System (NAS) in the United States will become a complex array of commercial and general aviation aircraft, unmanned aircraft systems, reusable launch vehicles, rotorcraft, airports, air traffic control, weather services, and maintenance operations, among others. The Federal Aviation Administration (FAA) projects that by 2025 air traffic will increase by more than 50 percent with 1.1 billion passengers a year and more than 85,000 flights every 24 hours contributing to further delays and congestion in the sky. This increased system complexity necessitates the application of systematic safety risk analysis methods to understand and eliminate where possible, reduce, and/or mitigate risk factors. The product of this effort is the development of an Uninhabited Aerial System (UAS) safety analysis model, which hereafter is called USAM. The USAM effort proposed herein is an extension of current efforts underway by the UAS community, and it extends these efforts by incorporating UAS scenarios and encounter geometries to populate existing safety analysis models, thereby producing credible future UAS safety metrics

Primary U.S. Work Locations and Key Partners

An Uninhabited Aerial System Safety Analysis Model (USAM)

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

An Uninhabited Aerial System Safety Analysis Model (USAM), Phase I

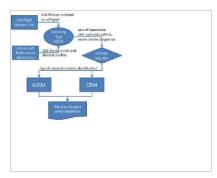
Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
Intelligent	Lead	Industry	Rockville,
Automation, Inc.	Organization		Maryland
Langley Research	Supporting	NASA	Hampton,
Center(LaRC)	Organization	Center	Virginia

Primary U.S. Work Locations	
Maryland	Virginia

Project Transitions

May 2013: Project Start



November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140361)

Images

Project Image

An Uninhabited Aerial System Safety Analysis Model (USAM) (https://techport.nasa.gov/imag e/126288)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Intelligent Automation, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

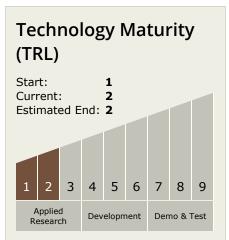
Carlos Torrez

Principal Investigator:

Vivek Kumar

Co-Investigator:

Vivek Kumar



Small Business Innovation Research/Small Business Tech Transfer

An Uninhabited Aerial System Safety Analysis Model (USAM), Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

 TX16 Air Traffic Management and Range Tracking Systems
TX16.1 Safe All Vehicle Access

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

